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Abstract

-Mobile robot navigation using visual sensors re-
quires that a robot be able to detect landmarks and
obtain pose information from a camera image. This
paper presents a vision system for finding man made
markers of known size and calculating the pose of

these markers. The algorithm detects and identifies
the markers using a weighted pattern matching tem-
plate. Geometric constraints are then used to calcu-
late the position of the markers relative to the robot.
The selection of geometric constraints comes from the
typical pose of most man made signs; such as the
sign standing vertical and the dimensions of known
size. This system has been tested successfully on a
wide range of real images. Marker detection is reli-
able, even in cluttered environments, and under cer-
tain marker orientations, estimation of the orientation

has proven accurate to within 2 degrees, and distance
estimation to within 0.3 meters.

Task description

Humans are very dependent on their sense of sight
for navigation. People use both natural and man-
made landmarks to help them determine where they

are and which way they want to go next. What hu-
mans can do with the greatest of ease, however, can
be very difficult for robots. Mobile robot navigation

using visual sensors typically requires that the robot
he able to obtain pose information from a camera im-

age. This task often includes recognizing markers or
other known objects in the image and calculating the
object pose from the size and appearance.

There are several tasks that a robot navigating by
vision must deal with: the robot must to be able to ex-
tract markers from a complex environment; the robot

has to recognize these markers from many different
points of view; and the robot must determine, from
it's view of the marker, the pose (3D position and ori-
entation) of the marker. In addition, for all practical
purposes, the robot should be able to perform all of
the above tasks relatively fast (less than a few seconds
in most cases).

This paper describes a vision system that was im-
plemented for the AAAI 1993 Robot Competition in
Washington D. C. on July 11-16, 1993. All vision
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processing was performed onboard the robot using a
80486 PC DOS based computer. A complete descrip-

tion of the design of the University of Michigan entry
can be found in [1].

The vision system is divided into a marker ex-
traction and identification Step, and a pose estima-

tion step. Marker extraction finds predefined mark-
ers (black 'x's and '+% on a white background) in
the environment and determines their pose relative
to the robot. Thus, a r0i)ot using this system should

be able to navigate autonomously using visual sensors
in a semi-constrained_onment. The required ge-
ometric constraints are: the marker must stand verti-

cal; the marker and Camera Contain no roll; the focal

length of the camera and the camera's location rela-
tive to the robot are:l_owh, the robot is oriented in

the plane perpendicular to the marker; and the width
and height of the marker are known. Though these
constraints may seem restrictive, they are typical of
most man made signs such as traffic signs and office
door markers.

Marker detection

The marker detection phase is composed of two
main routines: the connected components routine
and the marker identification routine. The detection

phase must be both fast and accurate for the system
to be useful for most real world tasks.

To maximize speed, we make only one pass through
the entire image. During the pass, the image is
thresholded and connected components are found and

labeled. One pixel components are ignored and not
labeled. Size thresholding then filters out most of

the non-marker compon%nts. Only one pass is made
through all possible connected components. Figure 1
shows sample output from this stage. The possible
markers are outlined with a bounding box.

To identify or reject the remaining markers, a

weighted pattern matching template is used. An nxn
template matrix is created for each marker (see Fig-

ure 2). Increasing n increases the resolution of the
template, but also increases the process time. We
found n = 7 to be a good compromise. This weighted
template indicates which areas are expected to be
black and which ones white. The weights for our
matrix are currently determined by trial and error,
but we could easily replace these with machine gener-
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Figure 1: The first image is a typical input im-

age. The second image shows the mark-
ers that are detected by the connected
components routine. These markers will
be identified as x, +, or neither.
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Figure 3: Sample marker with calculated x and +
certainty values. "b" indicates a black
pixel; "w" indicates a white pixel, x
refers to the x template; p refers to the
+ template, r counts rows; c counts
columns. For this example, the program
is 95.8% certain that the sample marker
is an x and 35.7% certain that it is a +.

Figure 2:
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Weighted pattern templates for the x
and the + markers. Positive values in-

dicate expected black areas; negative ar-
eas are expected to be white. Certainty
increases with magnitude.

ated weights if a learning program were implemented.
The marker template which a component most resem-
bles is selected as the "guess" for that component.
The program generates a certainty measure with each
guess (see Figure 3) and uses this measure to accept
or reject the guess.

Each marker can have one or more templates. The
additional templates may be used to improve marker
recognition from other views.

Two types of heuristic information is also used in
identifying the markers. Some heuristics were known

before the program was written. Knowing that all +'s
have a vertical line down the center of the bounding
box, no matter what the robot's relative position, has
strongly emphasized the importance of the center line
in the template. Other heuristics were not learned or
incorporated until after the program had been tested.
Diagonal lines often scored high enough certainty val-
ues to be considered x's. Adding a specific test to ver-
ify that each possible x is not a diagonal line solved
this problem.

Pose estimation

The three dimensional position and orientation
(pose) of the markers is also determined. Such in-
formation is useful for performing further analysis.
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Onepossibleapplicationof theposeestimational-
gorithmis thedetectionof roadsigns.Onceasign's
poseiscalculatedthepixelscorrespondingto thesign
canbemappedto anorthographicprojection.Since
virtuallyall characterrecognitionalgorithmsassume
anorthographicprojection,thiswouldallowformuch
improved character recognition.

For the robot competition, the pose of the mark-
ers also represents the pose of the box to which the
marker is attached. One phase of the competition re-

quires the robot to autonomously move the box from
one location to another. The marker pose is used to

guide the robot to the box such that the box can be
pushed to the appropriate location.

Geometric constraints are used to calculate the po-
sition of the markers relative to the robot. First, the

marker is expected to be mounted on a planar sur-
face and that the four corners of the marker are de-
tected from the low level image processing (marker
extraction and identification). The markers dimen-
sions are also know in advance. Second, the marker

is standing vertical. As mentioned before, this is not
an unreasonable constraint as many man made signs
stand vertical. Finally, the calibration parameters of
the camera are known, including orientation of the
camera relative to the robot and the camera's focal

length. Also, there should be minimal* camera roll

(rotation about the Z axis).
These geometric constraints form a set of 24 equa-

tions in 18 unknowns defining the position of the four
corners of the markers. This provides an overcon-
strained set of equations which is solved using the
method of least squares. The final result are the 3D

position of the four corners of the markers. For the
given application, the orientation of the markers and
the distance to the center of the marker are calculated

from the four 3D positions. These two values are used

by the robot to navigate to the markers so that more
accurate identification and pose calculations can be
made.

Utilizing Geometric Constraints

Figure 4 depicts the geometry of the imaging pro-
cess with the bounding box of a '+' marker being

mapped to the image plane. Both the width (w) and
height (h) of the markers are known. The three di-
mensional unit direction vectors nl, n2, n3, and n4,
which are directed from the known focal center of the
camera F towards the unknown marker position vec-

tors/_1,/_2,/_3, and/_4, are calculated. This calcu-
lation is feasible given the position of the focal center

of the camera F, and given the four sensor plane 2D

position vectors pl, p_, p3, and p_4. These 2D vectors
correspond to the mapping of the corners of the mark-
ers onto the sensor plane. Due to the imaging process,
distances dl, d2, d3, and d4 are unknown (where dn

*Current experimentation indicate that both a marker
tilt and marker (or camera) tilt of up to 10 degrees do not
significantly effect the calculation of the position of the
marker. In addition, the effects on the orientation also
seem negligable relative to other errors. Further testing is
being performed.
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Figure 4: Mapping of objects onto the image plane.

Yc
camera sensor plane

Figure 5: Locations of coordinate frames

is the distance in 3D space from ph to P_n). Figure 5

shows the coordinate frame assigned to the camera's

sensor plane _, and its relation to camera's 3D coor-
dinate frame qc, the image coordinate frame qi, and
the robot coordinate frame q/r.

It is assumed that the camera focal length is known

and that the pose of the camera relative to the robot
is also know. Then all points are transformed to the
robot coordinate frame @r. This results in the follow-

ing equations of known vectors:

n'l = [-ply,-ply, f]

= f]
= -p3 , f]

n4 = [-p4z, -p4 , f].

(2)

(3)

(4)

(5)

The vector equations with unknowns are:

/71 =dl x nl (6)

V2 = d2 × n'2 (7)

/¢3 = d3 x n'3 (8)

/74 = d4 x n'4. (9)

In addition the following constraint equations arise

given the marker is standing vertical and that the
camera and marker have no roll (rotation about the

Z axis). Here dl, d2, d3, and d4 are the distances from
the camera focal center to the unknown 3D points P 1,
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P2, P3, and P4.

P2_: = dl x nlx + w × nw_: (10)

P2y = dl x nl_ + w × nw_ (11)

P3x = d4 x n4,: + w x nwx (12)

P3y = d4 x n4_ + w x nwy (13)

P4,, = dl x nlz + h (14)

P3_ = d2 x n2z + h (15)

dl x nl_ = d2 x n2z (16)

d4 x n4_ = el3 x n3z (17)

P4x = Plx (18)

P4y = Ply (19)

P3x = P2x (20)

P3y = P2y. (21)

These equations can be expressed as an overcon-
strained system of linear equations with the above 24

equations and the 18 unknowns of dl, d2, d3, d4,/_1,
P2, P3, P4, and n_v. The two dimensional unit vec-
tor n_w has an x and y component, nwx corresponds

to the x component of the vector pointing from /_l

to /_2, and nwy corresponds to the y component of
this vector. There is no z component to n_v since the
markers, and the camera, are assumed to have no roll._

Equations 2 thru 21 result in the matrix equation

= A_, (22)

where ff is the 24 element known vector

if=(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, H, H, 0, 0, 0, 0)

(23)

and _ is the 18 element unknown vector

_=(Plx, P2x, P3_, P4x, Ply, P2u, P3_, P4_, (24)

Ply, P2z, P3_, P4_, dl, d2, d3, d4, nwx, nwy)

and the matrix A is the following:

"1 0 0 0 0 0 0 0 O000-nlx 0 0 0 0 0

0 1 0 0 0 0 0 O 0000 0 -n2x 0 0 0 0

0 0 1 0 0 0 0 0 0000 0 0 -n3_ 0 0 0

0 0 0 1 0 0 0 0 0000 0 0 0 --n4x 0 0

0 0 0 0 1 0 0 0 O000-nly 0 0 0 0 0

0 0 0 0 0 1 0 0 0000 0 -n4x 0 0 0 0

0 0 0 0 0 0 1 0 0000 0 0 -n3y 0 0 0

0 0 0 0 0 0 0 1 0000 0 0 0 --n4y 0 0

0 0 0 0 0 0 0 0 lO00--nlz 0 0 0 0 0

0 0 0 0 0 0 0 0 0100 0 -n2z 0 0 0 0

0 0 0 0 0 0 0 0 0010 0 0 -n3z 0 0 0

0 0 0 0 0 0 0 0 0001 0 0 0 --n4z 0 O

0-I I 0 0 0 0 0 0000 0 0 0 0 0 0

0 0 0 0 0-i 1 0 0000 0 0 0 0 0 0

i 0 0-10 0 0 0 0000 D 0 0 0 0 0

0 0 0 0 1 00-IOODO 0 0 0 0 0 D

0 0 0 0 0 0 O 0 0000 0 0 -n3z n4z 0 0

0 0 0 0 0 0 0 0 0000 nlz --n2z 0 0 0 0

0 0 0 0 0 0 0 00010 0 --n2z 0 0 0 0

0 0 0 0 0 0 0 0 O001--nlz 0 0 0 0 0

0 1 0 0 0 0 0 0 0000-nlx 0 0 0 -W 0

0 0 0 0 0 1 0 0 O000--nix 0 0 0 0 -W

0 0 1 0 0 0 O 0 0000 0 0 0 -n4x-W 0

0 0 0 0 0 0 1 0 0000 0 0 0 --n4y 0 -W

Results

The accuracy of the pose estimation algorithm is
measured by the error between the estimated and true
marker distance and orientation. Robustness refers to

the program's ability to detect markers and make rea-
sonable pose estimations in complex situations such
as cluttered images, tilted camera, uneven floor, etc.
A set of experiments have been performed which test
these measures.

The testing of this vision system has produced
promising results. Marker extraction and identifica-
tion is very accurate, even in cluttered images. Mark-
ers can be extracted at orientations of up to 60 de-

grees. Pose estimation is possible in the range of
one to seven meters. Distance can be determined to
within .2 meters when the marker is at an orientation

of 50 degrees. Marker orientation can be as accurate
as 1 degree; the ground truth measurements of orien-
tation is approximately 1 degree, so any error at this
resolution could be a factor of either the vision sys-

tem or the ground truth measurements of the marker
orientation. These results were obtained on low res-

olution images of 315 by 200 pixels. Figure 6 shows
two sample images with the calculated marker pose
projected onto the images.

The system should be able to extract only and all
markers in an image. If a tradeoff must be made,
then it is prefered to that non-markers be identified
as markers. The robot can then approach false mark-

ers and perform further analysis to determine that
indeed this marker is not a false positive. To make
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Figure 7: Plot of the error in calculated distance as
actual distance increases and with zero
box orientation.

Figure 6: Two sample images with the calculated
marker pose projected on top.

such an analysis more tractable, the vision system
should output a confidence value with each marker
sighting, which would be used by the robot to deter-
mine which markers need further analysis. With each

classification, the marker detection algorithm gener-

ates a certainty value as given in equation 1, and the
pose estimation algorithm generates g, the residual
from the least squares fit as

= (25)

These two values, residual and certainly, are avail-
able to the robot to help determine how to accept the

marker and its pose.
The experiments involved processing of 42 images,

each having two to four markers. Only once did the
marker detection step identify a non-marker object as

a marker (a false positive). The program only missed
existing markers when oriented at angles greater than

50 degrees and often detects markers up to 70 degrees.
The original purpose of the marker size threshold

was to eliminate obvious non-marker components as

soon as possible and reduce the number of connected
components that are processed by the marker iden-
tification routine. If the user can set the threshold
to limit the size of the markers to a small range,
fewer extraneous components are then processed by
the marker identification routine, reducing the chance

of false positives. Unfortunately, a small range also
limits the distance at which markers can be recog-

nized. During testing, it was found that a narrow size

threshold was not crucial for accurate identification.
Marker sizes in the distance images ranged from about

50 pixels at seven meters to over 1000 pixels at one
meter. Even with such a wide size range, the program
returned a false positive only once, while successfully
finding over 100 markers in 42 test images.

Figures 7, 8, and 9 are plots of some of the experi-
ments. The first plot displays the calculated distance
error as a function of distance to the marker. All tests
resulted in an error of less than 0.4 meters and over

half being less than 0.2 meters. As expected, the re-
sults show that the error generally increases as the
distance from the object increases. The main excep-
tion being the two data points around 6 meters that
have a very small error. More data points are needed
to determine if this is the not due to some unfore-

seen anomaly of the algorithm, or just chance, as we

suspect it is.

Figure 8 displays the results from the experiment
to test the distance accuracy as a function of marker
orientation. The marker detection algorithm can not
reliably segment markers at orientations above 60 de-
grees, hence the orientation plots only extend from
zero to 60 degrees. An orientation of 0 degrees cor-
responds to the marker being perpendicular to the
imaging plane. All these tests were from a distance of
2.16 meters. The distance error is within 0.13 meters
with a marker orientation between zero degrees and

50 degrees.

Figure 9 represents the experiment to test the ori-
entation calculation accuracy as a function of marker
orientation. All the tests were from a distance of

2.16 meters again. This plot displays the interest-
ing feature that the error is minimal between 30 and
60 degrees. Also, the error increases from 30 degrees
back to 0 degrees of marker orientation. This effect
is due to the perspective transformation; when ob-
jects are perpendicular to the imaging plane, small
perturbations in the objects orientation make even
smaller changes in the view as mapped to the imaging

plane. The small perturbation effects increase as the
angle increases (object becoming less perpendicular
to the imaging plane). This effect causes fairly large
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Figure 9: Plot of the error in calculated box ori-
entation as actual box orientation in-

creases.

changes in the orientation of the markers (when the
object is almost perpendicular to the imaging plane)
to account for small changes in the mapping of the
marker onto the image plane. Hence, small changes
in marker orientation go unnoticed by the algorithm
when the object orientation is much less than 30 de-
grees. Perhaps more appropriately, small errors in the
pixel locations of the four corners of the marker result
in large changes in the computed object orientation
when orientations are less than 30 degrees. Errors
in the marker detection algorithm become more cru-
cial under small orientation angles, with our experi-
mental results showing this to be true as well. This
marker orientation sensitivity can be shown analyt-
ically as well. Figure 10 shows a two dimensional
representation of the problem. For our experiments,
the variables f, D, and L are known and have values
of 0.0085 meters, 2.16 meters and 0.23 meters respec-
tively, f corresponds to the camera focal lenght, D
the distance from the camera to the marker, and L
the width of the marker. The following equations are

basic geometry equations from Figure 10:

Lp = DI/f (26)

0 = 180 - atan(f/l) (27)

Figure 10: The two dimensional representation of
the orientation of the marker relative to

the imaging plane.

fl = arcsin((DI/(fL))sin(01)) (28)

a= 180-0-fl. (29)

Now solving for a as a function of l,

1

a(l) = arctan(f) - arcsin(DL -1 l_---_-zL2 ), (30)

and its derivative with respect to l is

.°,', ( :)'-_ - f1-2 1+-_ -Dr2, (31)

1 L -1 (1+

_fl-D2L-2(I+ t/_-) -1

\ 12]

Figure 11 represents the plot of a(l) for values of l

from zero to _, and Figure 12 is a plot of _ for

the same range of I. Notice the sharp knee in _ at
l _ 0.0007. This shows that for I < 0.0007 meters the

magnitude of the rate of change of a with respect to l
is fairly constant and small. However, for l > 0.0007
meters, the magnitude of this rate of change increases
very rapidly, meaning that small perturbations in the
length I (the measured width of the marker) result
in large changes in the marker orientation. When
the marker detection process introduces small spatial
measurement errors, for example, due to quantization
of the image and the due to the marker segmentation
process itself, then the resulting estimated orienta-
tion errors may be very large when l > 0.0007 meters.
This corresponds to the experimentM results as shown
in Figure 9. Also, from the plots in Figure 12 and 11,
the location of the knee at 0.0007 meters corresponds
to an angle of approximately 0.6 radians or 34 de-

grees. This in turn, corresponds to the experimental
findings that the orientation error increases for val-
ues of marker orientation less than approximately 30

degrees.

Conclusions

Results from this project indicate that it is possible
to obtain useful pose information from a camera im-
age in real time on a general purpose computer such
as a 80486 based PC. Additional tests on the sensitiv-

ity of pose estimation to various parameters such as

focal length value perturbations and marker size are
planned. In addition, we will be studying the trade-
offs between process time (i.e. image resolution) and

accuracy.
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